Definition 3.4.6 - Def of Open/Closed Set

Let: $S \subset \mathbb{R}$

if bd $S \subset S$, then S is closed. if bd $S \subset (\mathbb{R} \setminus S)$, then S is open.

Theorem 3.4.7

- a. A set S is open iff S = int S; i.e. iff $\forall s \in S$, s is an **interior point**.
- b. A set S is closed iff its compliment, $\mathbb{R} \setminus S$ is open.

Equivalently, a set s is open iff $\mathbb{R}\ \backslash \, S$ is closed.

Proof.

(a): \rightarrow Assume: S is open Want to show: S = int SBy definition, int $S \subset S$. Want to show: $S \subset int S$ Let: $x \in S(1)$ Want to show: $x \in int S$ Since S is open, bd $S \subset \mathbb{R} \setminus S$ So, $x \notin bd S$. Thus, $\exists \epsilon > 0$ st $\mathcal{N}(x, \epsilon) \cap \mathbb{R} \setminus \mathcal{S} \neq \emptyset$ $\forall \epsilon > 0, \mathbf{N}(x, \epsilon) \cap \mathbf{S} \neq \emptyset$ $x \in bd S \text{ if } \forall \epsilon > 0,$ $N(x,\epsilon) \cap S \neq \emptyset \text{ and } N(x,\epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$ Thus, $N(x, \epsilon) \subset S$. So, $x \in int S$. This proves that $S \subset int S$ \leftarrow Assume: S = int SWant to show: S is open Let: $x \in bd S$ Want to show: $x \in \mathbb{R} \setminus S$ Since $x \in bd S$, we conclude that $x \notin int S$.

Side Note-

 $\begin{array}{ll} \mathbf{x} \in \mathrm{bd} \ \mathrm{S} \ \mathrm{if}, \, \forall \ \epsilon > 0, \\ \mathbf{N}(x, \epsilon) \ \cap \ \mathrm{S} \neq \emptyset \ \mathrm{and} \ \mathbf{N}(x, \epsilon) \ \cap \ (\mathbb{R} \ \backslash \ \mathrm{S}) \neq \emptyset \end{array}$

Thus, $x \in \mathbb{R} \setminus S$. So, bd $S \subset \mathbb{R} \setminus S$. So, by definition, S is open. (b): S is closed iff $\mathbb{R} \setminus S$ is open. So, $x \notin bd S$. Thus, $\exists \epsilon > 0$ st $N(x, \epsilon) \cap S \neq \emptyset$ Hence, $N(x, \epsilon) \subset \mathbb{R} \setminus S$ So, $\mathbb{R} \setminus S$ is open from (a). \leftarrow Assume: $\mathbb{R} \setminus S$ is open Want to show: S is closed Let: $x \in bd S$ Want to show: $x \in S$ Since $x \in bd S$, $\forall \epsilon > 0$,

and

$$\mathbf{N}(x,\epsilon) \cap \mathbf{S} \neq \emptyset \tag{1}$$

$$\mathbf{N}(x,\epsilon) \cap (\mathbb{R} \setminus \mathbf{S}) \neq \emptyset \tag{2}$$

Since $\mathbb{R} \setminus S$ is open, $\forall s \in \mathbb{R} \setminus S$, s is an **interior point** of $\mathbb{R} \setminus S$. Thus, $x \in S$. We have shown that bd $S \subset S$. By definition, S is closed.

Example 3.4.8

- a. '[0, 5] is a closed set. ($\mathbb{R} \setminus [0, 5] = (-\infty, 0) \cup (5, \infty)$)
- b. (0, 5) is an open set.
- c. (0, 5) is neither open nor closed.
- d. '[2, ∞) is a closed set.
- e. $\mathbb R$ is both open and closed.

bd $\mathbb{R}=\emptyset\subset\mathbb{R}$

Also, int $\mathbb{R} = \mathbb{R}$

Also, \emptyset is both open and closed.

Theorem 2 (not in book)

Let: $\mathbf{x} \in \mathbb{R}$, $\epsilon > 0$ Then:

- a. N(x, ϵ) is an open set
- b. N*(x, ϵ) is an open set

(a)

Proof.

$$\begin{split} \mathrm{N}(\mathrm{x},\,\epsilon\,) &= \{\mathrm{y}:\,|y-x|<\epsilon\,\} \text{ i.e. } -\epsilon < y-x < \epsilon\\ \mathrm{So},\,\mathrm{y} \in \mathrm{N}(\mathrm{x},\,\epsilon\,) \text{ iff } \mathrm{x} -\epsilon < \mathrm{y} < \mathrm{x} + \epsilon\\ \mathbf{Let:} \quad \mathrm{y} \in \mathrm{N}(\mathrm{x},\,\epsilon\,)\\ \mathrm{We \ shall \ find \ } \hat{\epsilon} > 0 \text{ st}\\ \mathrm{N}(\mathrm{y},\,\hat{\epsilon}) \subset \mathrm{N}(\mathrm{x},\,\epsilon\,), \text{ which will show that}\\ \mathrm{N}(\mathrm{x},\,\epsilon\,) \text{ is open.} \end{split}$$

-Side Note-

```
Let: \hat{\epsilon} = \min \{y - (x - \epsilon), x + \epsilon - y\} (1)
Want to show: N(y, \hat{\epsilon}) \subset N(x, \epsilon)
Let: z \in N(y, \hat{\epsilon})
Then, y - \hat{\epsilon} < z < y + \hat{\epsilon} (2)
From (1), \hat{\epsilon} \leq y - (x - \epsilon) (3)
and
\hat{\epsilon} \leq x + \epsilon - y (4)
So from (4),
y + \hat{\epsilon} \leq y + x + \epsilon - y_i
y + \hat{\epsilon} \le x + \epsilon
From (3), (x - \epsilon) - y \le -\hat{\epsilon} (5)
Then,
y + (x - \epsilon) - y \le y - \hat{\epsilon}
x - \epsilon \leq y - \hat{\epsilon} (6)
From (2), (5), (6),
\mathbf{x} - \boldsymbol{\epsilon} \leq \mathbf{y} - \hat{\boldsymbol{\epsilon}} < \mathbf{z} < \mathbf{y} + \hat{\boldsymbol{\epsilon}} \leq \mathbf{x} + \boldsymbol{\epsilon}
Therefore,
\mathbf{x} - \epsilon < \mathbf{z} < \mathbf{x} + \epsilon
Thus, z \in N(x, \epsilon).
Hence,
N(y, \hat{\epsilon}) \subset N(x, \epsilon)
Which proves that
N(x, \epsilon) is open.
```

(b): $N^*(x, \epsilon)$ is an open set. Similar to (a).

Theorem 3.4.10

Let: I be an index set. $I \subset \mathbb{N} \subset \mathbb{R}$ **Suppose:** $G_{\alpha} \subset \mathbb{R}$ is an open set $\forall \alpha \in I$ Then,

a. $\bigcup_{\alpha \in I} G_{\alpha}$ is an open set.

b. If $G_i \subset \mathbb{R}$ is open $\forall i = 1, 2, ... n$ where $n \in \mathbb{N}$ Then $\bigcap_{i=1}^n G_i$ is open.

Proof.

(a):

Let: $\mathbf{x} \in \bigcup_{\alpha \in I} \mathbf{G}_i$ Thus, $\exists \alpha_0 \in \mathbf{I}$ st $\mathbf{x} \in G_{\alpha_0}$. Since G_{α_0} is open, $\exists \epsilon_0 > 0$ st $\mathbf{N}(\mathbf{x}, \epsilon_0) \subset G_{\alpha_0}$ Thus, $\mathbf{N}(\mathbf{x}, \epsilon_0) \subset \bigcup_{\alpha \in I} \mathbf{G}_{\alpha}$ This proves that $\mathbf{x} \in \text{int} (\bigcup_{\alpha \in I} \mathbf{G}_{\alpha})$ By Theorem 3.4.7 a), $\bigcup_{\alpha \in I} \mathbf{G}_{\alpha}$ is open.

(b):

Let: $\mathbf{x} \in \bigcap_{i=1}^{n} \mathbf{G}_{i}$ Thus, $\mathbf{x} \in \mathbf{G}_{i} \ \forall \mathbf{i} = 1, 2, \dots \mathbf{n}$ Since \mathbf{G}_{i} is open $\forall \mathbf{i} = 1, 2, \dots \mathbf{n}$ $\exists \epsilon_{i} > 0 \text{ st } \mathbf{N}(\mathbf{x}, \epsilon_{i}) \subset \mathbf{G}_{i} \ \forall \mathbf{i} \text{ from 1 to n.}$ Choose $\epsilon = \min \{\epsilon_{1}, \epsilon_{2}, \dots \epsilon_{n}\} > 0$ Then $\mathbf{N}(\mathbf{x}, \epsilon_{i}) \subset \mathbf{N}(\mathbf{x}, \epsilon_{i}) \ \forall \mathbf{i} \text{ from 1 to n.}$ Hence, $\mathbf{N}(\mathbf{x}, \epsilon_{i}) \subset \bigcap_{i=1}^{n} \mathbf{G}_{i}$ Hence, $\bigcap_{i=1}^{n} \mathbf{G}_{i}$ is open.

_____Side Note

—-(—(——)—)—x-epi, x-ep, x, xplusEp, xplusEpi

Corollary 3.4.11

- a. Let F_{α} be closed $\forall \alpha \in I$, I is an index set. Then $\bigcap_{\alpha \in I} F_{\alpha}$ is closed.
- b. Let F_i be closed $\forall i$ from 1 to n. Then $(\bigcup_{i=1}^n F_i)$ is closed.

(a):

Notice by de Moivre's theorem: $\mathbb{R} \setminus (\bigcap_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} (\mathbb{R} \setminus F_{\alpha})$ Which is open by Theorem 3.4.101 a), since $\mathbb{R} \setminus F_{\alpha}$ is open by Theorem 3.4.71 b). Hence, $\bigcap_{\alpha \in I} F_{\alpha}$ is closed.

(b): Similar.

Example 3.4.12

Let: $G_n = (\frac{-1}{n}, \frac{1}{n}) \forall n \in \mathbb{N}$ Then $\bigcap_{n=1}^{\infty} G_n = \{0\}$, which is closed. Compare with Theorem 3.4.101 b): $(-\infty, 0) \cup (0, -\infty)$

Accumulation (or Limit) Points; Definition 3.4.14

Let: $S \subset \mathbb{R}$ If $\forall \epsilon > 0$, $N^*(x, \epsilon) \cap S \neq \emptyset$, Then $x \in \mathbb{R}$ is an **accumulation** or **limit** point. The set of all accumulation points of S is denoted by S'. If $x \in S \setminus S'$, then x is an **isolated point**, in which case, $\exists \epsilon > 0$ st $N(x, \epsilon) \cap S = \{x\}$

Definition 3.4.16 - Closures

Let: $S \subset \mathbb{R}$ Then the **closure** of S, denoted by **cl S**, is defined to be: cl S = S \cup S'

For example: $S = (0, 1) \cup \{2\}$ S' = [0, 1] $bd S = \{0, 1, 2\}$