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HW 11: page 220 - 221, #1, 2, 5 and page 226-227, # 1 - 3, 4(a)(b), 5, 11

5.4 Continued

Theorem 5.4.6

f: D — R is continuous and D is compact.
Then f is uniformly continuous on D.

Proof.

Let: ce D andlete >0
Since if is continuous on D, 3 6 (¢) > 0 st

€
[f(z) = flo)l < 5 (1)
whenever |x — ¢| < d (c) and x € D
Notice that: 5(¢)
c
D )
C U N(c, 5 )
ceD
Since D is compact,
! §(ci)
D N (e, 2
U= 2)
Let: 6 = min{@, 5(22), @} andx,y € Dst |x —y| < ¢
Then, from (2),
Jk e {1, 2, .. n} st x € N(cy, @)
Thus,
d(c
|z —cp| < (2‘“) < 6(ck) (3)
e ex) _ dew) , 3lcr)
¢ ¢ c
[y = exl < ly—al + o — el <O+ =5 < =0 4 =8 = b(er) (4)
Now:

[f(@) = fy)l < [f(@) = fle)l + [ (er) = fy)]
So, from (1), (3), and (4),

|f($)—f(y)|<§+§:€

Hence, result. O
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Practice 5.4.7

Find a continuous function f : D — R and a Cauchy sequence {x,} in D st {f(x,,)} is divergent.
This is a good practice problem because it will show us why the next theorem is so useful.

Proof.

f:(0,1) — R where f(x) = 2 (we could have also used x?)
Let: Xn:%VHEN
Then lim x, =0

n—oo
So {x,} is a Cauchy sequence.
However,
f(x,) =
Hence,
{f(xn,)} diverges.

=n —ooasn —

3"‘"—‘

O
Theorem 5.4.8
Let: f: D — R be uniformly continuous on D
Assume: {x,} is a Cauchy sequence in D
Then,
{f(xn)} is a Cauchy sequence.
Proof.
Fore > 0,30 >0 st
w—yl <band 2,y €D = |f(z)— [(y) < e
Since |x,| is Cauchy,
IN € Nst [x, — Xn| < § whenever n, m > N
Hence,
lf(x,) — f(xm)| < € whenever n, m > N
which shows that {f(x,)} is Cauchy. O
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Theorem 5.4.9

A function f: (a, b) — R is uniformly continuous on (a, b)
iff f can be extended to a function f : [a, b] — R
where

f is continuous on [a, b].
Side Note -
We say that a function f : E — R is an extension of a function f: D — R

itDC Eand f(x) =1£(x),VxeD

Proof.

.
Assume: f: (a, b) — is uniformly continuous on (a, b)
Let: {x,} and{y,} be sequences in (a, b) st x, — aandy, — basn — oo
Then {x,} and{y,} are Cauchy sequences in D.
By Theorem 5.4.8, {f(x,)} and {f(y,)} are Cauchy sequences which, therefore, converge.
Let: lim f(x,) =pand lim f(y,) =q

n— oo n—oo
Define f : [a, b] — R by
f(x) = f(x) if x € (a, b), pifx = a, and qifx=b
Then fis an extension of f, which is continuous.

Notice that x, — aasn — oo and lim f(x,) = lim f(x,) =p = f(a)
n—o0

n— oo
Hence,
f(x) is continuous at x = a by Theorem 5.2.2(b).
SimilaEIy, N
Jim f(yn) = lim f(yn) = q = f(b)

Hence,

f(x) is continuous at x = b by Theorem 5.2.2(b).

Since f(x) = f(x) ¥V x € (a, b), then f is continuous on (a, b).

Hence,

f is continuous on [a, b].

-

Conversely,

Assume: f can be extended to a function f : [a, b] — R where f is continuous on [a, b]
By Theorem 5.4.6, fis uniformly continuous on [a, b], since by the Heine-Borel Theorem, [a, b] is compact.
Hence,

fvis uniformly continuous on (a, b).

Since f(x) = f(x) ¥V x € (a, b),

f is uniformly continuous on (a, b).

Hence, result.
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Practice: 5.4.10

Use Thm 5.4.9 to determine whether or not the function f(x) = sin(1) is uniformly continuous on (0, 1).

Proof.

Let: x, = %,VHEN
Then f(x,) = sin(nf) Vn € N
Here, lim x, =0
n—roo
Notice that lim f(xgr) =0
k—o0
However, lim f(x4r_3) =1
k—o0
Hence,
{f(xr)} does not converge (since, if it did, then all its subsequences would have to converge to the same
limit, which they do not).

O

Chapter 6: Section 6.1

Definition 6.1.1

Let: f be real-valued and defined on an interval containing the point ¢ (possibly an end-point)
We say that f is differentiable at c (i.e. has a derivative at c) if

i £ = £(0)

Tz—cC xTr—c

exists (and is, therefore, finite).
In this case,

f/(c) _ glcl_ﬁncf(xx) : f(C)
Alternatively,
o) — 1 SO =@

Example 6.1.2

Let: f(x) =x?,VxeR
For any ¢ € R, we have:
f(x) = (o) a? —c? (z—o)(x+c)

f'(c) = lim = lim = lim = lim(z +¢) = 2¢c
T—c r—c T—c T —C T—c T —c z—c




