HW 11: page 220 - 221, #1, 2, 5 and page 226-227, #1 - 3, 4(a)(b), 5, 11

5.4 Continued

Theorem 5.4.6

 $f: D \longrightarrow \mathbb{R}$ is continuous and D is compact.

Then f is uniformly continuous on D.

Proof.

Let: $c \in D$ and let $\epsilon > 0$

Since if is continuous on D, $\exists \delta$ (c) > 0 st

$$|f(x) - f(c)| < \frac{\epsilon}{2} \tag{1}$$

whenever $|x - c| < \delta$ (c) and $x \in D$

Notice that:

$$D \subset \bigcup_{c \in D} N(c, \frac{\delta(c)}{2})$$

Since D is compact,

$$D \subset \bigcup_{i=1}^{n} N(c_i, \frac{\delta(c_i)}{2})$$
 (2)

Let: $\delta = \min\{\frac{\delta(c_1)}{2}, \frac{\delta(c_2)}{2}, \dots \frac{\delta(c_n)}{2}\}$ and $x, y \in D$ st $|x - y| < \delta$

Then, from (2),

 $\exists \ \mathbf{k} \in \{1, 2, \dots n\} \ \mathrm{st} \ \mathbf{x} \in \mathrm{N}(\mathbf{c}_k, \frac{\delta(c_k)}{2})$

Thus,

$$|x - c_k| < \frac{\delta(c_k)}{2} < \delta(c_k) \tag{3}$$

and

$$|y - c_k| < |y - x| + |x - c_k| < \delta + \frac{\delta(c_k)}{2} \le \frac{\delta(c_k)}{2} + \frac{\delta(c_k)}{2} = \delta(c_k)$$
 (4)

Now:

$$|f(x) - f(y)| \le |f(x) - f(c_k)| + |f(c_k) - f(y)|$$

So, from (1), (3), and (4),

$$|f(x) - f(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, result. \Box

Practice 5.4.7

Find a continuous function $f: D \longrightarrow \mathbb{R}$ and a Cauchy sequence $\{x_n\}$ in D st $\{f(x_n)\}$ is divergent. This is a good practice problem because it will show us why the next theorem is so useful.

Proof.

 $f:(0,1)\longrightarrow \mathbb{R}$ where $f(x)=\frac{1}{x}$ (we could have also used x^2)

 $\begin{array}{ll} \textbf{Let:} & \mathbf{x}_n = \frac{1}{n} \; \forall \; \mathbf{n} \in \mathbb{N} \\ \text{Then} \lim_{n \to \infty} \, \mathbf{x}_n = 0 \\ \text{So} \; \{\mathbf{x}_n\} \; \text{is a Cauchy sequence.} \end{array}$

However,

 $f(x_n) = \frac{1}{\frac{1}{n}} = n \longrightarrow \infty \text{ as } n \longrightarrow \infty$

Hence,

 $\{f(\mathbf{x}_n)\}\ diverges.$

Theorem 5.4.8

Let: $f: D \longrightarrow \mathbb{R}$ be uniformly continuous on D

Assume: $\{x_n\}$ is a Cauchy sequence in D

Then,

 $\{f(x_n)\}\$ is a Cauchy sequence.

Proof.

For $\epsilon > 0$, $\exists \delta > 0$ st

$$|x-y| < \delta$$
 and $x, y \in D \Rightarrow |f(x) - f(y)| < \epsilon$

Since $|\mathbf{x}_n|$ is Cauchy,

 $\exists N \in \mathbb{N} \text{ st } |\mathbf{x}_n - \mathbf{x}_m| < \delta \text{ whenever n, m} \geq N$

 $|f(\mathbf{x}_n) - f(\mathbf{x}_m)| < \epsilon \text{ whenever n, m} \ge N$

which shows that $\{f(x_n)\}\$ is Cauchy.

Theorem 5.4.9

A function $f:(a,b) \longrightarrow \mathbb{R}$ is uniformly continuous on (a,b)iff f can be extended to a function $f:[a, b] \longrightarrow \mathbb{R}$ where

f is continuous on [a, b].

-Side Note-

We say that a function $\widetilde{f}: E \longrightarrow \mathbb{R}$ is an extension of a function $f: D \longrightarrow \mathbb{R}$ if $D \subset E$ and $\widetilde{f}(x) = f(x), \forall x \in D$

Proof.

Assume: $f:(a, b) \longrightarrow is uniformly continuous on (a, b)$

Let: $\{x_n\}$ and $\{y_n\}$ be sequences in (a, b) st $x_n \longrightarrow a$ and $y_n \longrightarrow b$ as $n \longrightarrow \infty$

Then $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in D.

By Theorem 5.4.8, $\{f(x_n)\}\$ and $\{f(y_n)\}\$ are Cauchy sequences which, therefore, converge.

Let: $\lim_{n\to\infty} f(x_n) = p$ and $\lim_{n\to\infty} f(y_n) = q$ Define $\tilde{f}: [a, b] \longrightarrow \mathbb{R}$ by

 $p ext{ if } x = a, ext{ and } q ext{ if } x = b$ $\widetilde{f}(x) = f(x) \text{ if } x \in (a, b),$

Then \widetilde{f} is an extension of f, which is continuous.

Notice that $x_n \longrightarrow a$ as $n \longrightarrow \infty$ and $\lim_{n \to \infty} \widetilde{f}(x_n) = \lim_{n \to \infty} f(x_n) = p = \widetilde{f}(a)$

Hence,

f(x) is continuous at x = a by Theorem 5.2.2(b).

Similarly,

$$\lim_{n \to \infty} \widetilde{f}(y_n) = \lim_{n \to \infty} f(y_n) = q = \widetilde{f}(b)$$

f(x) is continuous at x = b by Theorem 5.2.2(b).

Since $f(x) = f(x) \ \forall \ x \in (a, b)$, then \tilde{f} is continuous on (a, b).

f is continuous on [a, b].

Conversely,

Assume: f can be extended to a function $\widetilde{f}:[a,b]\longrightarrow \mathbb{R}$ where \widetilde{f} is continuous on [a,b]

By Theorem 5.4.6, \tilde{f} is uniformly continuous on [a, b], since by the Heine-Borel Theorem, [a, b] is compact. Hence,

f is uniformly continuous on (a, b).

Since $f(x) = f(x) \forall x \in (a, b),$

f is uniformly continuous on (a, b).

Hence, result.

Practice: 5.4.10

Use Thm 5.4.9 to determine whether or not the function $f(x) = \sin(\frac{1}{x})$ is uniformly continuous on $(0, \frac{1}{x})$.

Proof.

Let: $\mathbf{x}_n = \frac{2}{n\pi}, \, \forall \, \mathbf{n} \in \mathbb{N}$

Then $f(x_n) = \sin(n\frac{\pi}{2}) \ \forall \ n \in \mathbb{N}$

Here, $\lim_{n\to\infty} x_n = 0$

Notice that $\lim_{k \to \infty} f(\mathbf{x}_{2k}) = 0$ However, $\lim_{k \to \infty} f(\mathbf{x}_{4k-3}) = 1$

Hence,

 $\{f(x_n)\}\$ does not converge (since, if it did, then all its subsequences would have to converge to the same limit, which they do not).

Chapter 6: Section 6.1

Definition 6.1.1

Let: f be real-valued and defined on an interval containing the point c (possibly an end-point) We say that f is **differentiable at c** (i.e. has a derivative at c) if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists (and is, therefore, finite).

In this case,

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

Alternatively,

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

Example 6.1.2

Let: $f(x) = x^2, \forall x \in \mathbb{R}$

For any $c \in \mathbb{R}$, we have:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c} = \lim_{x \to c} \frac{(x - c)(x + c)}{x - c} = \lim_{x \to c} (x + c) = 2c$$