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5.4 Continued

Theorem 5.4.6

f : D −→ R is continuous and D is compact.

Then f is uniformly continuous on D.

Proof.

Let: c ∈ D and let ε > 0

Since if is continuous on D, ∃ δ (c) > 0 st

|f(x)− f(c)| < ε

2
(1)

whenever |x − c| < δ (c) and x ∈ D

Notice that:

D ⊂
⋃
c∈D

N(c,
δ(c)

2
)

Since D is compact,

D ⊂
n⋃
i=1

N(ci,
δ(ci)

2
) (2)

Let: δ = min{ δ(c1)2 , δ(c2)
2 , ... δ(cn)

2 } and x, y ∈ D st |x − y| < δ

Then, from (2),

∃ k ∈ {1, 2, ... n} st x ∈ N(ck, δ(ck)
2 )

Thus,

|x− ck| <
δ(ck)

2
< δ(ck) (3)

and

|y − ck| < |y − x|+ |x− ck| < δ +
δ(ck)

2
≤ δ(ck)

2
+
δ(ck)

2
= δ(ck) (4)

Now:

|f(x)− f(y)| ≤ |f(x)− f(ck)|+ |f(ck)− f(y)|

So, from (1), (3), and (4),

|f(x)− f(y)| < ε

2
+
ε

2
= ε

Hence, result.
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Practice 5.4.7

Find a continuous function f : D −→ R and a Cauchy sequence {xn} in D st {f(xn)} is divergent.

This is a good practice problem because it will show us why the next theorem is so useful.

Proof.

f : (0, 1) −→ R where f(x) = 1
x (we could have also used x2)

Let: xn = 1
n ∀ n ∈ N

Then lim
n→∞

xn = 0

So {xn} is a Cauchy sequence.

However,

f(xn) = 1
1
n

= n −→ ∞ as n −→ ∞
Hence,

{f(xn)} diverges.

Theorem 5.4.8

Let: f : D −→ R be uniformly continuous on D

Assume: {xn} is a Cauchy sequence in D

Then,

{f(xn)} is a Cauchy sequence.

Proof.

For ε > 0, ∃ δ > 0 st

|x− y| < δ and x, y ∈ D ⇒ |f(x)− f(y)| < ε

Since |xn| is Cauchy,

∃ N ∈ N st |xn − xm| < δ whenever n, m ≥ N

Hence,

|f(xn) − f(xm)| < ε whenever n, m ≥ N

which shows that {f(xn)} is Cauchy.
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Theorem 5.4.9

A function f : (a, b) −→ R is uniformly continuous on (a, b)

iff f can be extended to a function f̃ : [a, b] −→ R
where

f̃ is continuous on [a, b].

—————————————————————–Side Note—————————————————————-

We say that a function f̃ : E −→ R is an extension of a function f : D −→ R
if D ⊂ E and f̃(x) = f(x), ∀ x ∈ D

———————————————————————————————————————————————

Proof.

−→
Assume: f : (a, b) −→ is uniformly continuous on (a, b)

Let: {xn} and{yn} be sequences in (a, b) st xn −→ a and yn −→ b as n −→ ∞
Then {xn} and{yn} are Cauchy sequences in D.

By Theorem 5.4.8, {f(xn)} and {f(yn)} are Cauchy sequences which, therefore, converge.

Let: lim
n→∞

f(xn) = p and lim
n→∞

f(yn) = q

Define f̃ : [a, b] −→ R by

f̃(x) = f(x) if x ∈ (a, b), p if x = a, and q if x = b

Then f̃ is an extension of f, which is continuous.

Notice that xn −→ a as n −→ ∞ and lim
n→∞

f̃(xn) = lim
n→∞

f(xn) = p = f̃(a)

Hence,

f̃(x) is continuous at x = a by Theorem 5.2.2(b).

Similarly,

lim
n→∞

f̃(yn) = lim
n→∞

f(yn) = q = f̃(b)

Hence,

f̃(x) is continuous at x = b by Theorem 5.2.2(b).

Since f̃(x) = f(x) ∀ x ∈ (a, b), then f̃ is continuous on (a, b).

Hence,

f̃ is continuous on [a, b].

←−
Conversely,

Assume: f can be extended to a function f̃ : [a, b] −→ R where f̃ is continuous on [a, b]

By Theorem 5.4.6, f̃ is uniformly continuous on [a, b], since by the Heine-Borel Theorem, [a, b] is compact.

Hence,

f̃ is uniformly continuous on (a, b).

Since f̃(x) = f(x) ∀ x ∈ (a, b),

f is uniformly continuous on (a, b).

Hence, result.
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Practice: 5.4.10

Use Thm 5.4.9 to determine whether or not the function f(x) = sin( 1
x ) is uniformly continuous on (0, 1

π ).

Proof.

Let: xn = 2
nπ , ∀ n ∈ N

Then f(xn) = sin(nπ2 ) ∀ n ∈ N
Here, lim

n→∞
xn = 0

Notice that lim
k→∞

f(x2k) = 0

However, lim
k→∞

f(x4k−3) = 1

Hence,

{f(xn)} does not converge (since, if it did, then all its subsequences would have to converge to the same

limit, which they do not).

Chapter 6: Section 6.1

Definition 6.1.1

Let: f be real-valued and defined on an interval containing the point c (possibly an end-point)

We say that f is differentiable at c (i.e. has a derivative at c) if

lim
x→c

f(x)− f(c)

x− c

exists (and is, therefore, finite).

In this case,

f ′(c) = lim
x→c

f(x)− f(c)

x− c
Alternatively,

f ′(x) = lim
t→x

f(t)− f(x)

t− x

Example 6.1.2

Let: f(x) = x2, ∀ x ∈ R
For any c ∈ R , we have:

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim
x→c

x2 − c2

x− c
= lim
x→c

(x− c)(x+ c)

x− c
= lim
x→c

(x+ c) = 2c
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